Lesson 13. Partial Derivatives

1 This lesson...

- Definition of partial derivative
- Computing partial derivatives
- Higher derivatives
- Practice!

2 Definition

- Derivatives of single-variable functions
- Instantaneous rate of change
- Slope of tangent line

- How can we get similar things for multivariable functions? Partial derivatives
- Idea: let $f(x, y)$ be a function of 2 variables
- Fix the value of y to $b \Rightarrow g(x)=f(x, b)$ is a function in 1 variable x
- Take the derivative of $g(x)=f(x, b)$ with respect to x
- This gives us the rate of change of $f(x, y)$ with respect to x when $y=b$
- Repeat, but with fixing the value of x and taking the derivative with respect to y

- The partial derivative of $f(x, y)$ with respect to x is
- The partial derivative of $f(x, y)$ with respect to y is
- In words, $\partial f / \partial x$ is
\square
- In words, $\partial f / \partial y$ is

Example 1. Here is the wind-chill index function $W(T, v)$ from Lesson 11:

	Wind speed (km/h)											
	T^{v}	5	10	15	20	25	30	40	50	60	70	80
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

a. Estimate $W_{T}(-15,40)$.
b. Give a practical interpretation of this value.

Example 2. Here are the level curves for a function $f(x, y)$. Determine whether the following partial derivatives are positive or negative at the point P.
a. f_{x}
b. f_{y}

3 Computing partial derivatives

- Let $f(x, y)$ be a function of 2 variables
- To find f_{x}, treat y as a constant and differentiate $f(x, y)$ with respect to x
- To find f_{y}, treat x as a constant and differentiate $f(x, y)$ with respect to y

Example 3. Let $f(x, y)=3 x^{3}+2 x^{2} y^{3}-5 y^{2}$. Find $f_{x}(2,1)$ and $f_{y}(2,1)$.

Example 4. Let $f(x, y)=\frac{x}{y}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Example 5. Let $f(x, y)=\sin \left(\frac{x}{1+y}\right)$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

4 Higher derivatives

- We can take partial derivatives of partial derivatives
- The second partial derivatives of $f(x, y)$ are
- $f_{x x}=$
- $f_{x y}=$
- $f_{y x}=$
- $f_{y y}=$
- Clairaut's theorem. Suppose f is defined on a disk D that contains the point (a, b).

If $f_{x y}$ and $f_{y x}$ are continuous on D, then

- We can take third partial derivatives (e.g. $f_{x x y}$), fourth partial derivatives (e.g. $f_{y x y y}$), etc.

5 Examples

Do as many as you can!
Problem 1. Use the table of values of $f(x, y)$ to estimate the values of $f_{x}(3,2)$ and $f_{y}(3,2)$.

$x y$	1.8	2.0	2.2
2.5	12.5	10.2	9.3
3.0	18.1	17.5	15.9
3.5	20.0	22.4	26.1

Problem 2. Consider the level curves given in Example 2. Determine whether the following partial derivatives are positive or negative at the point P.
a. $f_{x x}$
b. $f_{y y}$
c. $f_{x y}$

Problem 3. Let $f(x, y)=\arctan (y / x)$. Find $f_{x}(2,3)$.

Problem 4. Let $f(x, y, z)=\frac{y}{x+y+z}$. Find $f_{y}(2,1,-1)$.
(Partial derivatives of functions of 3 or more variables are found the same way: regard all but one variable as constant, and take the derivative with respect to the remaining variable.)

Problem 5. Let $f(x, y, z)=\sqrt{\sin ^{2} x+\sin ^{2} y+\sin ^{2} z}$. Find $f_{x}(0,0, \pi / 4)$.

Problem 6. Find all the second partial derivatives of $f(x, y)=x^{4} y-2 x^{3} y^{2}$.

Problem 7. Let $f(x, y)=\cos \left(x^{2} y\right)$. Verify that Clairaut's theorem holds: $f_{x y}=f_{y x}$.

Problem 8. Let $f(x, y)=\sin (2 x+5 y)$. Find $f_{y x y}$.

Problem 9. Find all the second partial derivatives of $f(x, y)=\ln (a x+b y)$.

Problem 10. The temperature at a point (x, y) on a flat metal plate is given by $T(x, y)=60 /\left(1+x^{2}+y^{2}\right)$, where T is measured in ${ }^{\circ} \mathrm{C}$ and x, y in meters. Find the rate of change in temperature with respect to distance at the point $(2,1)$ in the x-direction and the y-direction.

Problem 11. The average energy E (in kcal) neeeded for a lizard to walk or run a distance of 1 km has been modeled by the equation

$$
E(m, v)=2.65 m^{0.66}+\frac{3.5 m^{0.75}}{v}
$$

where m is the body mass of the lizard (in grams) and v is its speed (in $\mathrm{km} / \mathrm{h})$. Calculate $E_{m}(400,8)$ and $E_{v}(400,8)$ and interpret your answers.

Problem 12. Cobb and Douglas used the equation $P(L, K)=1.01 L^{0.75} K^{0.25}$ to model the productivity of the American economy from 1899 to 1922, where L is the amount of labor and K is the amount of capital.
a. Calculate P_{L} and P_{K}.
b. Find the rate of change in productivity with respect to labor and capital in the year 1899 , when $L=100$ and $K=100$. Interpret the results.
c. Do the same for the year 1920, when $L=194$ and $K=407$.
d. In the year 1920, which would have benefited production more, an increase in capital investment or an increase in spending on labor?

Problem 13. Consider the contour map of a function f given below. Are the following derivatives at the given point positive or negative?
a. f_{x}
b. f_{y}
c. $f_{x x}$
d. $f_{y y}$
e. $f_{x y}$

