Lesson 13. Partial Derivatives

1 This lesson...

- Definition of partial derivative
- Computing partial derivatives
- Higher derivatives
- Practice!

2 Definition

- Derivatives of single-variable functions
 - o Instantaneous rate of change
 - Slope of tangent line

- How can we get similar things for multivariable functions? Partial derivatives
- Idea: let f(x, y) be a function of 2 variables
 - Fix the value of y to $b \Rightarrow g(x) = f(x, b)$ is a function in 1 variable x
 - Take the derivative of g(x) = f(x, b) with respect to x
 - This gives us the rate of change of f(x, y) with respect to x when y = b
 - \circ Repeat, but with fixing the value of x and taking the derivative with respect to y

• The partia	tal derivative of $f(x, y)$ with respect to x is	
• The partia	tal derivative of $f(x, y)$ with respect to y is	
• In words,	$\partial f/\partial x$ is	
• In words,	$\partial f/\partial v$ is	
- III words,		

Example 1. Here is the wind-chill index function W(T, v) from Lesson 11:

	Wind speed (km/h)											
Actual temperature (°C)	T^{v}	5	10	15	20	25	30	40	50	60	70	80
	5	4	3	2	1	1	0	-1	-1	-2	-2	-3
	0	-2	-3	-4	-5	-6	-6	-7	-8	-9	-9	-10
	-5	-7	-9	-11	-12	-12	-13	-14	-15	-16	-16	-17
	-10	-13	-15	-17	-18	-19	-20	-21	-22	-23	-23	-24
	-15	-19	-21	-23	-24	-25	-26	-27	-29	-30	-30	-31
	-20	-24	-27	-29	-30	-32	-33	-34	-35	-36	-37	-38
	-25	-30	-33	-35	-37	-38	-39	-41	-42	-43	-44	-45
	-30	-36	-39	-41	-43	-44	-46	-48	-49	-50	-51	-52
	-35	-41	-45	-48	-49	-51	-52	-54	-56	-57	-58	-60
	-40	-47	-51	-54	-56	-57	-59	-61	-63	-64	-65	-67

- a. Estimate $W_T(-15, 40)$.
- b. Give a practical interpretation of this value.

Example 2. Here are the level curves for a function f(x, y). Determine whether the following partial derivatives are positive or negative at the point P.

b. f_y

3 Computing partial derivatives

- Let f(x, y) be a function of 2 variables
- To find f_x , treat y as a constant and differentiate f(x, y) with respect to x
- To find f_y , treat x as a constant and differentiate f(x, y) with respect to y

Example 3. Let $f(x, y) = 3x^3 + 2x^2y^3 - 5y^2$. Find $f_x(2, 1)$ and $f_y(2, 1)$.

Example 4. Let $f(x, y) = \frac{x}{y}$. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

Example 5. Let
$$f(x, y) = \sin\left(\frac{x}{1+y}\right)$$
. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$.

4 Higher derivatives

- We can take partial derivatives of partial derivatives
- The second partial derivatives of f(x, y) are

$$\circ f_{xx} =$$

$$\circ f_{xy} =$$

$$\circ f_{yx} =$$

$$\circ f_{yy} =$$

• Clairaut's theorem. Suppose f is defined on a disk D that contains the point (a, b).

If f_{xy} and f_{yx} are continuous on D, then

• We can take third partial derivatives (e.g. f_{xxy}), fourth partial derivatives (e.g. f_{yxyy}), etc.

5 Examples

Do as many as you can!

Problem 1. Use the table of values of f(x, y) to estimate the values of $f_x(3, 2)$ and $f_y(3, 2)$.

xy	1.8	2.0	2.2
2.5	12.5	10.2	9.3
3.0	18.1	17.5	15.9
3.5	20.0	22.4	26.1

Problem 2. Consider the level curves given in Example 2. Determine whether the following partial derivatives are positive or negative at the point P.

- a. f_{xx}
- b. f_{yy}
- c. f_{xy}

Problem 3. Let $f(x, y) = \arctan(y/x)$. Find $f_x(2, 3)$.

Problem 4. Let
$$f(x, y, z) = \frac{y}{x + y + z}$$
. Find $f_y(2, 1, -1)$.

(Partial derivatives of functions of 3 or more variables are found the same way: regard all but one variable as constant, and take the derivative with respect to the remaining variable.)

Problem 5. Let $f(x, y, z) = \sqrt{\sin^2 x + \sin^2 y + \sin^2 z}$. Find $f_x(0, 0, \pi/4)$.

Problem 6. Find all the second partial derivatives of $f(x, y) = x^4y - 2x^3y^2$.

Problem 7. Let $f(x, y) = \cos(x^2 y)$. Verify that Clairaut's theorem holds: $f_{xy} = f_{yx}$.

Problem 8. Let $f(x, y) = \sin(2x + 5y)$. Find f_{yxy} .

Problem 9. Find all the second partial derivatives of $f(x, y) = \ln(ax + by)$.

Problem 11. The average energy E (in kcal) needed for a lizard to walk or run a distance of 1 km has been modeled by the equation

$$E(m, v) = 2.65m^{0.66} + \frac{3.5m^{0.75}}{v}$$

where m is the body mass of the lizard (in grams) and v is its speed (in km/h). Calculate $E_m(400,8)$ and $E_v(400,8)$ and interpret your answers.

Problem 12. Cobb and Douglas used the equation $P(L, K) = 1.01L^{0.75}K^{0.25}$ to model the productivity of the American economy from 1899 to 1922, where *L* is the amount of labor and *K* is the amount of capital.

- a. Calculate P_L and P_K .
- b. Find the rate of change in productivity with respect to labor and capital in the year 1899, when L = 100 and K = 100. Interpret the results.
- c. Do the same for the year 1920, when L = 194 and K = 407.
- d. In the year 1920, which would have benefited production more, an increase in capital investment or an increase in spending on labor?

Problem 13. Consider the contour map of a function f given below. Are the following derivatives at the given point positive or negative?

b. *f*_y

c. f_{xx}

d. f_{yy}

e. f_{xy}

